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ABSTRACT: We present a systematic way to construct solutions of the (n = 5)-reduction
of the BKP and CKP hierarchies from the general 7 function 7("t#) of the KP hierarchy.
We obtain the one-soliton, two-soliton, and periodic solution for the bi-directional Sawada-
Kotera (bSK), the bi-directional Kaup-Kupershmidt (bKK) and also the bi-directional
Satsuma-Hirota (bSH) equation. Different solutions such as left- and right-going solitons
are classified according to the symmetries of the 5th roots of €’*. Furthermore, we show that
the soliton solutions of the n-reduction of the BKP and CKP hierarchies with n = 2j + 1,
7 = 1,2,3,..., can propagate along j directions in the 1 + 1 space-time domain. Each
such direction corresponds to one symmetric distribution of the nth roots of e*. Based
on this classification, we detail the existence of two-peak solitons of the n-reduction from
the Grammian 7 function of the sub-hierarchies BKP and CKP. If n is even, we again
find two-peak solitons. Last, we obtain the “stationary” soliton for the higher-order KP
hierarchy.
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1. Introduction

The Kadomtsev-Petviashvili (KP) hierarchy is of central interest for integrable systems
and includes several well-known partial differential equations such as the Korteweg-de
Vries (KdV) and the KP equation. With pseudo-differential Lax operator L given as [l [

L:8+u28’1+u38’2+--- , (11)

the corresponding generalized Lax equation

oL

— =By, L =1,2,3,... 1.2

8tn [ nsy ]’ n ) b ) ) ( )
gives rise to the infinite number of partial differential equations (PDEs) of the KP hierarchy
with dynamical variables {w;(t1,%2,t3,...)} with ¢ = 2,3,4,.... Here B, =Y ", bm@i =
(L™)4 denotes the differential part of L™ and in following we will use L™ = L™ — B, to
denote the integral part.



The simplest nontrivial PDE constructed from ([.J) is the KP equation given as

3 2
8 <4(9UQ OUQ 81@)_38 u2:0. (1.3)
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In table [] we show the Lax operator and corresponding (1 + 1)-dimensional examples of
sub-hierarchies of the KP hierarchy. An alternative way to express the KP hierarchy is
given by the Zakharov-Shabat (ZS) equation [RJ],

0B, 0By,
ot ot,

+ [Bn,Bn] =0, m,n=2,3,4,... (1.4)

The eigenfunction ¢ and the adjoint eigenfunction 1 of the KP hierarchy associated with
equation ([[.4) are defined by

90 L —

where ¢ = ¢(A\;1) and ¢ = ¢(A;t) and ¢ = (t1,t9,...).

The n-reduction of the KP hierarchy corresponds to the situation L™ = 0 such that
L" =B, =0"+v,_20" 2+---4+v;0+vg. Then the v;, i =0,1,...,n—2, are independent
of (tn,ton,tsn,...). In this way the Lax pair of the (1 + 1)-dimensional integrable system

can be found. Well-known examples of such n-reductions include the 4-reduction of the
KP hierarchy [[J] with Lax pair

(02 + 4ud? + 4u 0y + 2y + 4u* 4+ v)) = N, (1.6)

3
O = (aﬁ + 3ud, + §u$> b, ti=uxz, t3="t, (1.7)
corresponding to the Satsuma-Hirota (SH) equation [LJ]
—4uy + 12uug + Ugge + 30 =0, 20 + 6uv, + Vggr = 0. (1.8)

Furthermore, eliminating v in the above equations, we can obtain a 6th order equation

(u=zg)
_8ztt + Zrrrrrr szxxt + 18Zl‘zl‘l‘l‘l‘ + 362xxzazaraz + 722§me = 07 (19)

which has been called bi-directional Satsuma-Hirota (bSH) equation [RJ. Naturally, there
also exist n-reductions of the BKP and CKP hierarchies. For example, the 5-reduction of
the BKP hierarchy with v = us is given as

8:? + 51;8;S + 5u$8§ + <5u2 + 1—30um + gzt> 835] ¢ = Ao, (1.10)
Orp = (03 +3udy),  u= 2ty =t,t1 =z, (1.11)

which is the Lax pair corresponding to bi-directional Sawada-Kotera (bSK) equation [[[{, [[]

(2c2ae + 1520 2000 + 1525 — 15202 — B2aat) , — B2 = 0. (1.12)



The 5-reduction of the CKP hierarchy (u = ug) with Lax pair [[L0], [L1]

15 35 ) 9 9
{85 + 5u83 —ugﬁz (5u2 + —Ugy + —2¢)0z + DUUy + Uy + —ut} o= Xp, (1.13)

2 6 3° 3 6
3 3
Orp = | 05 + 3ud, + Uz o, u=zgt3=1t1 =u, (1.14)
gives the bi-directional Kaup-Kupershmidt (bKK) equation
3 45 2
Zeazar + 1920 2ppe + 1525 — 152520 — D2zgar + o Gaa ] 5z = 0. (1.15)
x
An essential characteristic of the KP hierarchy is the existence of the T-function and
all dynamical variables {u;}, i = 2,3,..., can be constructed from it [fl, g], e.g.,
82
ur =5 logT (1.16)
! 1 (1.17)
=— ogT .
2 63:3 83:(975 &7

So it is a central task to construct the 7-function in order to solve the nonlinear PDEs
associated with the KP hierarchy. In the following, we will show that ¢ and ¢ play a key
role in this construction.

Gauge transformations [P4, P offer an efficient route towards the construction of the
7 function of the KP hierarchy. In ref. [Rf] two kinds of such a gauge transformation have
been proposed, namely,

Tp(¢) = 900!, Ti(p) =y 107 (1.18)

resulting in a very general and universal T function (see equation (3.17) of Bg] and also
IWy, , in 7). The determinant representation of the gauge transformation operators with
(n + k) steps is given in ref. [R7]. In particular, the Grammian 7 function [ of the
KP hierarchy can be generated by an iteration of the transformation [26, Rd, B(]. This
is straightforwardly understood from Chau’s 7 function and the determinant representa-
tion [R7] if we impose a restriction on the generating functions of the gauge transformation.
Grammian 7 function have also been used to solve the reduction of the constrained BKP
and CKP hierarchies B]-B3, Bg].

There are two issues that arise when one wants to study the solutions of the (1 + 1)-
dimensional solitons equations given by the n-reduction of the BKP and CKP hierarchies.
The first is how it retain the restrictions, i.e. L* = —9LO~for BKP and L* = —L for CKP,
for the transformed Lax operators L() = TLT~!. In other words, the problem is how to
obtain the 7-functions T}gKJ; Jand éKj;) from the general 7-function 7("*+%) = | kaT(O)
with the gauge transformation 7,41 of the KP hierarchy. Here 79 is the initial value
of the 7-function of the KP hierarchy. Also, the generating functions ¢;, 1; of the gauge

transformation will be complex-valued and related to the n-th roots of €. The second



sub-hierarchy Lax operator example equation

BKP [fl, ] L*=—9Lo~'  SK [B, fi], bSK [id, ]

CKP [ L*=-L KK [§, f], bKK [Ld,
n-thKdV [f] L* =0 KdV [, Boussinesq-type [B], SH [[Ld]
n=223,4

cKP [[1,Rl] L=0+¢0% YO [[4], MKAV [iF], NLS [iq]

Table 1: Examples of sub-hierarchies of the KP hierarchy, Lax operators used to construct them

and resulting equations. The symbol * indicates the conjugation, for example, 0* = —3d. There
are some abbreviations used in table: Sawada-Kotera (SK), bi-directional Sawada-Kotera (bSK),
Kaup-Kupershmidt (KK), bi-directional Kaup-Kupershmidt (bKK), Satsuma-Hirota (SH), Yajima-
Oikawa (YO), Modified KdV (MKdV), Non-linear Schrédinger (NLS),constrained KP(cKP).

issue therefore is how to choose generating functions ¢; = ¢(N\i;x,t) and ; = ¥ (ui; x,t))
such that Tgfg;k) and Tg;;k) correspond to a physical T-function 7%3(& +k>, which is real and

positive on the full (z,¢) plane.

In fact, the bKK and bSK equations have been introduced recently by Dye and
Parker [[[0, [[T]] when looking for the bidirectional soliton analogues of the Sawada-Kotera
(SK) [[, [l and Kaup-Kupershmidt (KK) [, f] equations. The Lax pairs of bKK and bSK
related similarly as the Lax pairs of KAV and Boussineq equation, thus ensuring their inte-
grability. Both bKK and bSK equation have a bidirectional soliton solution [[Ld, [L1] which
have been obtained by the Hirota bilinear method [B7]. The profile of the bKK solitons
depend on their direction of propagation. The right-going solitons of bKK are standard
one-peak solitons, but the left-going solitons have two peaks. Very recently, Verhoeven and
Musette [RJ] have plotted the bi-directional solitons for the bKK and bSH equation based
on the Grammian 7 function.

In this paper, we want to study why the 5-reduction of the BKP and CKP hierarchies
have bidirectional soliton solutions, whereas their 3-reduction does not. As a first step,
we will therefore exhibit the relationship between the periodic, left-going and right-going
solitons of the 5-reduction and the 5-th roots of €. In order to do so, we derive the
7 functions of the BKP and CKP hierarchies in sections f- The explicit formulas of
the corresponding 7-functions for solitons as well as for the periodic solutions of bSK
and bKK are given and the two-peak soliton is discussed in detail. In section [f, we will
prove that no two-peak solitons exist for the bSH equation. The one-peak soliton has bi-
directional motion and we also obtain the periodic and two-soliton solutions. In section [,
we will discuss the lower and higher-order reductions of BKP and CKP hierarchies and
also the n =even-reductions of the KP hierarchy. We will show that the soliton of the
(2j + 1)-reduction of BKP and CKP hierarchies can move along j directions (j = 1,2,...),
investigate the relationship with the symmetric distribution of the (25 + 1)-th roots of €.
In particular, we will obtain the “stationary” soliton for the higher reduction of the KP
hierarchy. For the higher-order equation and even-reduction of KP hierarchy, we can again
find a two-peak soliton.



2. 7 functions for BKP and CKP hierarchies

Let us first define the generalized Wronskian determinant

IWin = IWen(9\, 09 g0 fO 0 p0)

0 0 0 0 0 0 0 0
fg() 1() fgli) () fgii)‘f?f)“‘ fg()'r(z)
J

0) (0 (0 0 0
f(lfl) fg fz) fg](g_)lf;g) k—1"Jn

0 0 0 0 O. 0 O: 0
e e e e |
- f(O) f(O) (0) L (0) :

1 2 3 n

(0) (0) O (0)

1,z 2. 3,z n,xr

(fl(o))(nfkfl) (fz(o))(nfkfl) (f?go))(nfkfl) e ( T(LO))(nfkfl)

(k) ©
In particular, ITWq,, = W, <f1 ,..., T(LO)> with (fi(0)> = 6(’;& is the usual Wron-
skian determinant of functions { f1 ) 2(0), R 7(10)}. We shall also use the abbreviation

[ f = [ fdz with integration constant equal to zero.

Lemma 1 ([R6, RT]) The 7 function of the KP hierarchy generated by the gauge trans-
formation T,y is given as

T(n+k) :IW (wk a¢k 12 1 7 ¢2 9. ”’¢1(10))7_(0)’ (22)

where <q§§0),1/1](-0)> = ((]ﬁ()xi;i),l/}(uj;i)) are solutions of equation ([[.§) with initial value

7O for the T-function and the initial values of the {u;} are {ugo)}. Here {¢§0),w§0)} are
called generating functions(GFs) of gauge transformation.

Let us now discuss how to reduce the 7("+%) in (B-3) to the 7 function of the BKP
hierarchy. The key problem is how to keep the restriction (L("+k))* = —9L"F)5=1 under
the gauge transformation 7},,; [R7]. It should be noted that ¢ = (t1,t3,t5,...) in BKP
hierarchy.

Proposition 1 (see refs. [Bd, BY])

1. The Lax operator transforms as L("+k) = Tn+kLT11k under the gauge transformation
Thor with n =k and generating functions 1/12(0 qﬁ fori=1,2,..

* 7

2. The T function T](BK—;)N of the BKP hierarchy is

n+n 0 0 0
Tn = TWan (@0, 014 81061708, 0) (2:3)
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f¢n 1,z ¢10) f¢n 1,z ¢2 f¢n 1,z ° (0) %(¢1(1021)2 fgbn 1,z gb”

f¢§‘?oi-¢§°’ %( (0))0 fgbéZi-qbé,Z’ ---fqbég) gzsff’l fqbu n
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Proof:

1. It is clear that a single step of the gauge transformations Tp or 17 can not keep the

restriction. So we use

== (47) o (o)

(2.5)

such that the lax operator is L(® = TLT~!. Let us check whether it satisfies the

required restriction

(m)* — L@ (2.6)
which means in terms of T" that
Tp (V) 1 (67) 0 = o1y (") 7o (4). (2.7)
Based on the determinant representation of T' 7] we see from (R.7) that
E R
rhs=0-|——7——F=] 0 ¢, (2.8)
fou” ), / <z>
_ ¢§0) -1,(0) 1 ¢1
This implies ¢ (0) . So we have seen that in order to keep the restriction of the

Lax operator, we have to regard T =T14; as basic building block in iteration of the

gauge transformations 7,1 k. In particular,

Tors — TI( O 1o (687) 11 (#2) T (o). (2.10)

T =1 (62) 7o (65°) 1 62) 2o (4 1 62) 70 (o).

and so on such that kK =n and 1/)2(0) = gbg’oz fort=1,2,...,n

2. According to the determinant of T},, [B7 and 7(*+*) [, 7] with k = n and wl@) =

¢Z L i=12...n, 71(37?;,") can be obtained directly from 7("™%) as in Lemma .

For the CKP hierarchy, we have again t = (t, 13, t5,...) and the restriction is (L(?*))*

= —L(nth),



Proposition 2 (see refs. [BJ, B9)) 1. The appropriate gauge transformation Ty is
given by n = k and generating functions 1/)2(0) = gbgo) fori=1,2,...,n

2. The T function TéKjLPn of the CKP hierarchy has the form

78— W (09,000 D O (2.11)
J ¢n° ¢1° J qzsno 5 f¢n° ORI S N
f¢n o ol ¢2’f¢ f¢£°21-¢i°21f¢ﬁ°21 6
= : : T((gzp
o0 g f¢§°’-¢§°’ [0 g0 o o0 AR
[ o [P 6P [l e o [ o)) [l 6y -
2.12

Proof:

1. Similar to the BKP hierarchy we have to try the two-step gauge transformation
T=T =T <¢§1>) Tp (¢§°>> . (2.13)
With L(®) = TLT~!, the restriction (L(Q))* = —L® then implies

Tp ( (1)> Ty < (0)) =17 (ﬂ)g)) Tp ( §0)> : (2.14)

Based on the determinant representation of 7' 7], we find from (.14) that

r.hs =0 — T ‘fol) @ o tapl0, (2.15)
Lhs = 0 — 1(#01) @ el (2.16)
J i
Then 1/1 (0) . Again, we have to regard T' =TT <¢§1)) Tp (¢§0)> as basic building

block such that
Topo =17 < (3)) Tp <¢§ )) T (¢( )> Tp ( §O)> ;
T =11 () 10 () 1 69) 20 (82) 1 (o) 30 ()

sok:nandqbi(o) zqﬁgo) fori=1,2,...,n

(2.17)

2. According to the determinant of 7,4 [ and (k) 6, B7] with k = n and 1/)2(0) =

¢§O), 1=1,2,...,n, Tg?ip ") is obtained directly from 7("*%) in Lemma [[.
|
In fact, we can let 1/11,(0) = ciqﬁgogg) (or 1/11,(0) = ci(bgo)) with constants ¢;. However, the new

](37?;) (or Tgf;;n) ) associated with 1/)2(0) = ciqﬁz(f)gg (or ¢i(0) = cigbgo)) is equivalent to the



ones in Proposition [ (or Proposition fl). Although refs. [B0, BJ] have results similar to our

Propositions Il and [, our approach is more direct and simpler for the construction 7'](37;}?)

and Tg;g;l). If the initial values of dynamical variables {u;} of BKP(CKP) hierarchy are

zero, then the equations in ([.§) of <¢§0), ¢§0)> = (gb()\z‘; 1), ¥y )) become more simpler as

dp(N; t)

ot = [a;z(b()\; i)] B (t1,t3,t5, .. ) , (2.18)
%ﬁm}) = ()" [ )], = (tuts s, (2.19)

and T](B(EP = 1( ggp = 1). Last, we note that for the generalized KP (gKP) hierarchy with
Lax operator L=1" n= 2,4,6,8,..., and L* = ﬁ, the 7 function Tg(?;}r)k) generated by
gauge transformations 7,, has the same form as for the CKP hierarchy. This result will

afford a simple way to construct the 7 function of bSH equation in section [f.

3. Soliton solutions of the bSK equation

As pointed out in the introduction, there are two steps en route from a 7 function 7(+%)

generated by the gauge transformations T, .j of the KP hierarchy to the 7 function of
equations as the n-reduction of BKP or CKP hierarchies. The second step is to build
physical 7 functions from the complex-valued T}g;i;n) and Tg?i;) constructed in the last
section. In the following sections, we will illustrate our approach by computing the 7
function for the 5-reduction of BKP and CKP, i.e., for the bSK and bKK equations.

The 5-reduction of the BKP hierarchy is the bSK equation ([[.L1J). Assume for the

initial value u = 0 in equations ([.1() and ([.T1]), then ¢Z(0) = ¢(\;;x,t) are solutions of

0p(Ni; . t)

5 = (2p(Nizz,1)) . (3.1)

(0)

So proposition [l with 75p = 1 implies that the 7 function of bSK is given as follows.

Proposition 3. The 7 function of the bSK equation generated by T}, 1, from initial value

1 s
+ 0 0
Tb(gKn) :IWn,n (¢n{[”¢n 1337 c :([,33; :([)’ 7 “7¢ > (3.2)
and the solution of the bSK equation generated by Tyiyn from initial value 0 is
= 2 (g2 03

Here ¢§0) = ¢(\i;x,t) are solutions of equation (3.1).

In general, this 7 function TéS;gn) for bSK is complex and related to 5-th roots of €. We
have to find the real and non-zero 7 function from it such that u in equation (B.J) is a real
and smooth solution of bSK. This is main task of this section. We start by analysing the
solution ¢(\;z,t) of equation (B.])and make the universal ansatz

d(N\;x,t) ZA I ith p? =\ (3.4)



Here p; = kexp <@2>, K> = A,k €R,0<e<2randj=0,1,2,34. There are two
important ingredients which we can use to find the desired solution. The first is that the
5-th roots €; = exp (@z) of €% are distributed uniformly on the unit circle in C. So for
a suitable value of ¢ there exist combinations of p;’s which are symmetric upon reflection
on the z-axes; similarly for the y-axes for other values of . The second ingredient is that
Thsk and exp (ax + [t) m,sg will imply the same solution u since u = (9% log Thsk. Here,
«a and [ are arbitrary, complex constants. Therefore we can obtain the desired real and
smooth solutions of the bSK if mpgx can be expressed as mhsk = e TP qx & Fgk, in
which 7ygk is a real and nonzero function although m,gk is complex. We call 7,gk the
physical T function for the bSK equation. Based on the above arguments, let us make the

refined ansatz

dA1;a,t) = Ayl TPl Blematait et g = — ke kD = |\, by € R,
(3.5)

or

(ﬁ()\l;ﬁﬂ,t) == A1€p11+p?t + B1€q1x+q?t, pP1 = kleiel,ql = kleiiel, k‘5 == |)\1|, k‘l € R, (36)

and in the next step we need to fix the ratio %. We stress that the above analysis is also

true for the derivation of the bKK equation.

Proposition 4. Define & = xk; cosey + tk} cos 3e1. Then the physical T function of bSK
generated by Ty is

Bi\? B
e S <A—1> e % 42 <A_i> (3.7)

(

and the corresponding one soliton u = 9?2 log ?bé;r(

1)

1S gilven as

2
16 (%) k? cos? e

u = 5 9 - (38)
e () e 2 ()
Here % > 0. The velocity of the moving soliton is v = —k%% and can be both positive
and negative depending on the choice of 1. Specifically, we have v_ = v[sl:% < 0 and
vy = v\al:% > 0.
Proof:

Tééﬂl) _ < go))2 _ A%eQi(Ml sinei+tk$ sin3e1)

B \? B
261 D1 261 4 9 21
et 4 <A1> e + <A1>

and gbgo) = ¢(\1;x,t) defined by equation (B.5). |

Let us point out a relation between the distribution of the 5-th roots of €’ and the direction

of movement for the soliton.



1. (ei51|€1:ﬂ/10,—e_i51|€1:7r/10) — one distribution of 5-th roots of e* — (p; =
k1€Z€1|51:7r/1Qa
q1 = —kie7*|. 1 /10) in equation BH)— V]e,—r/10 < 0, left-going soliton u in

equation (B.§) ;

2. (e |e1=37 /10 —e 1 |€1:3,T/10) — another distribution of 5-th roots of €® — (p; =
k1€t |2 —3x /10
q1 = —k1e7*t;, _3/10) in equation Bl — Vle;—3x/10 > 0, right-going soliton u in

equation (B.§) .

We can see from equation (B.§) that the one-soliton of bSK has only one peak in its
profile. The process of generating a two-soliton by 75,2 is more complicated.

Lemma 2. With ¢(\1;2,t) and ¢(Aa;z,t) as in equation ([5.3), and using Proposition [,

Tééif) s given by

X
{ (421 — fr)e?@rte2) L (e fetare (@ )2 (@ )2
A[k2+ K3+ 2kika cos(er — e2)]” A[k2+ K3+ 2kiks cos(er — e2)]” \ A1/ \ A

— (425 + f3)e2(&1-62) By \? — (425 + f3)e (21-8) B \?
A[k2 4 k3 — 2k1ks cos(e1 + 82)]2 <A_2> i A[k2 4 k3 — 2k1ks cos(e1 + 82)]2 <A_1>
(2iz5 — f5)e*!
[k% + k2 + 2k ko cos(e1 — 52)] [k% + k2 — 2k ko cos(e1 + 52)]
(—2izf — f5)e %
2 [k:% + k2 + 2k ko cos(eq — 82)] [k:% + k2 — 2k ko cos(e1 + 52)]
(—2iz7 — f5)e*
[k% + k2 + 2k ko cos(e1 — 52)] [k% + k3 — 2k ko cos(e1 + 52)]
(2i2% — f5)e~ %2
[k% + k2 + 2k ko cos(e1 — 52)] [k% + k2 — 2k ko cos(e1 + 52)]
—(k? + 3)°
[k% + k2 + 2k ko cos(e1 — 52)] [k% + k3 — 2k ko cos(e1 + 52)]

(242) 12 42 2i[x(k1 sine1+ko sinea)+t(k3 sin 3e1+k3 sin 3e2
P32 _ g2 42 20]a( i 3oinse2)]

+
2

_l’_

+
2

+
2

S/ N 7N 7 N 7N 7N
Bl e 2 e

N N N N~

+
2

Here the z;, i = 1,3,5,7 are given in [ and f; = [k% + k3 + 2k1 ko cos(e1 — 82)]2, f3 =
[k% + k2 — 2k1 ko cos(e1 + 52)]2 and fs5 =/ fifs, as well as & = xk; cose; + tkf’ cos 3¢g; for
i =1 and 2.

We now need to find a suitable solution of %,i = 1,2 such that the summation of
terms in the {} bracket of equation (B.1() is a positive function on the whole (x,t) plane.
The following two lemmas is useful. Let 2] = 421 — f1, 24 = 423 + f3, 25 = 2iz5 — f5,2h =
—2iz; — f5, and z;,4 = 1,3,5,7 given in [A].

Lemma 3. For z,,i =1,3,5,7 there exist relations

—2h 2y = (zg)Q; 21 (25) = (2'7)2 (3.11)

,10,



B Z/ o Z/ o / o o ‘Z/| o 1
Lemma 4. Let A—i = i, —z = i, and go = ‘%P, g = gs = ‘Z;IQ’ 99 = 111 then
! 2 /AT 2
_B(=Z=) =1 — — ) =1 3.12
2] <A2> ’ 2 1 ’ ( )
() (B1\? (B2\? ~1 /By (Bs

— —_— JES— —_— p— 3.13
Zi A1 A2 g2; Zi A1 A2 99, ( )

The %,i = 1,2 in Lemma [ are what we are looking for, and then the physical T function

%t%i?) is give by following proposition.

hold.

Proposition 5.

~(242) e2(&1+€2) 92672(&%2)
T = +
bSK 4(1{% + k:% + 2k ko cos(e; — 52))2 4(k% + k:% + 2k kg cos(e; — 52))2
e2(61—&2) e—(261—-62)
+ 2 2 5+ 2 2 2
4(]{31 + k‘2 — 2k1ko COS(€1 + 62)) 4(]{31 + k‘2 — 2k1ko COS(€1 + 62))
6261
_l’_
2(k? + k3 + 2k1ko cos(er — €2)) (k3 + k3 — 2k kg cos(eq + £2))
+ 9667251
2(]{3% + k% + 2k1k32 COS(€1 — 62)) (kﬁ% + k‘% — 2k1k32 COS(€1 + 62))
6262
_l’_
2(]{3% + k‘% + 2k1 ko COS(€1 — 62)) (kﬁ% + k‘% — 2k ko COS(€1 + 62))
+ gge %
2(k? + k2 + 2k1ka cos(e1 — €2)) (k3 + k3 — 2k1ky cos(e1 + €2))

(K + k3)%90
3 5 3 5 , (3.15)
2(/<:1 + k3 + 2k ko cos(e; — 82)) (k:1 + k3 — 2k ko cos(er + 82))
(

the two soliton solution is u = (92 log %bgirg)). In particular, e1 = €2 = {5 results in two

_%

overtaking solitons and moving in negative direction; €1 = €9 = ?1’—76 produces two overtaking

solitons and moving in positive direction; €1 = 15,62 = ?1’—76 results in two head-on solitons.

We have plotted the one solitons in figure [ associated with parameters A; = By = 1,k; = 1

of equation (B.§). The two solitons in Proposition ] are shown in figure J associated with
parameters k1 = 2 and ko = 1.3.

4. Periodic and soliton solutions of bKK equation

The 5-reduction of the CKP hierarchy yields the bKK equation equation (Jl.15). Let the
initial value be u = 0 in egs. ([.13]) and ([.14), then (bz(o) = ¢(\;;x, t) are solutions of
ot

Bp(Nisz,t) = Nip(\i; 7, 1), = (03p(Nis z,1)). (4.1)
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(right).

€0T (9002 )E0d3aHC

Figure 2: Two left- and right-going as well as head-on colliding solitons for the bSK equa-

tion ([12): &1 = g2 = & (left), 1 = €2 = 3% (right) and &1 = &, g5 = 3% (collision).

So the Proposition f] implies the 7 function of bKK equation.
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Proposition 6. The 7 function of the bKK equation generated by Th,+n from initial value

1 s
f¢<° ¢<° f¢<° ¢<° f¢<° ¢<° S ARE R
0 0 0
Jouly- ot Jouly-0” [l ---f¢221-¢;31f¢;31
= y : (4.2)
0 0 0 0 0 0 0 0
S gt g
§ I R Y R I I R SR f¢1'n71 f¢1
and the solution u of the bKK from initial value zero is
u= (a§ log TSI?IL(")> . (4.3)

Here qﬁl(-o) = ¢(N\i; 2, t) are solutions of equation ([{.1).

n)

As before, Té?&; is complex and related to the 5-th roots of e¢® and again we have to

find a physical T function 721&}3}—( ") such that u in equation ([.3) is real and smooth solution
includes solitons and periodic solutions. The case of n = 1 and n = 2 will be discussed in

detail. Similar to the bSK equation, we should assume the solutions of equation (@) as

¢(>‘17 x, t) = A16p1$+p‘;’t + Bleqlx—i_q?t’ b1 = kleiEI’QI = _kle_ial’ k{] = |>‘1|’ kl € Ra
(4.4)

or
d(Asx,t) = APttt L Bttt ke gy = ke kP = M|, k1 € R, (4.5)

to extract physical T function TéKK ") from Té%r{n). At first, we would like to give the two

simple cases which are generated by the gauge transformations 771.

Proposition 7. Let & = wky cose +tk3 cos 3¢, % = ie 1 and ¢§0) = ¢(A1;x,t) defined

by equation ({.4), then the physical T function of bKK extracted from Té?&_(n) ) 18
n—=
A1) 26y 26 2 4.6
Tk — € te T+ sine; (4.6)

and the corresponding one soliton u = <82 log Té t )) 18

4k2 (cos 81) <1 4 cosh 251)

sineq

o (cosh 261 + Sm€1>2 0

with €1 = {5 or ?g The velocity of the soliton isv = —k? Cfss?’;ll In particular, the left-going
soliton have two peaks in its profile and the negative speed v_ = v[e . the right-going

soliton have only one peak and positive speed vy = 'U|€1:3_‘rr.
10

,13,



Proof: Taking <;5§0) = ¢(\1;,t) of equation (E4) and n = 1 back into Proposition [}, the
straightforward calculation leads to

2 ,2i(xk1 sine1+tk3 sin 3e1)
(1+1) _ ( (0>>2 _ Aje ! 261 | o201 48
ThKK / ) 21 e e M Y 1 (48)
Here & = xkycosey + tk‘;’ cos 3e7. [ |

If qﬁgo) = ¢(\1;2,t) defined by equation (.F), then we can get a periodic solution as
following proposition.

Proposition 8. Let 7, = xkjsine; + tk3 sin3e1, and ¢§0) = ¢(A;2,t) defined by equa-
tion {.4), A1 = B1 =1 in gbgo), then the physical T function of bKK extracted from

Lntn)

ThKK is

n=1

La41) 1
KK = Coser + cos(2n1 — €1) (4.9)

and the corresponding solution

—4k? sin? 1 (7005(27717261) + 1)

2] (1+1) cos el
<8 ThKK ) = 2 (4.10)
(ot +cos2m — =)
is periodic. Here e = 2—’6 or ‘ig The velocity for the solution is v = —k} Sslﬁiil Ife1 = 10,

u in equation ([-10) is a left-going periodic wave. If 1 = %, u in equation ([.10) is a
right-going periodic wave.

Proof:

2(xk1 cos e +tk:f cos 3e1)

2 e ( 1
t();;(l) = / <¢§0)) = 1y +cos(2m —e1)] . (4.11)

COS €1

Here 1, = wk; sine; + tk$ sin 3¢, and gbgo) = ¢(A1;z,t) is defined by equation ([L.H). [ |

Based on Propositions [] and fJ, we can find following corresponding relationship be-

tween symmetrical distributions of 5-th roots of €’ and moving direction of solutions.

1. (e, —e_i51)|51:110 — the first distribution of 5-th roots of € — (p; = k1e®!, q1 =

—kye~ )| = in equation (E4) — left-going two-peak soliton in equation ({.7);

1=

2. (e1,—e7"*1)|_ _sx — the second distribution of 5-th roots of €’ — (p; = ke’
10

q = —kle_i51)|€1:31 in equation ([4) — right-going one-peak soliton in equa-
10
tion (7);

3. (e, e7%1)|_ _a2, — the third distribution of 5-th roots of €* — (p; = kie'?
10

€1

g1 = kle_i51)|€1:2_ﬂ in equation ([LJ) — left-going periodic wave in equation (f£10);
10
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4. (eial,e_i51)|€1:4l — the fourth distribution of 5-th roots of e — (p; = kje®!,
10

= kle*iel)]q:z;_ﬂ in equation (JL.§) — right-going periodic wave in equation (f.10).
10

There are only four distributions of 5-th roots of €%, which are symmetric respect with
x-axes or y-axes. However, there exist several other pairs of roots in the above four distri-

butions which will result in divergent solutions of bKK through the above procedure. For

,i137r i87\'

;137 _ ; 8 —i8x
example, p1 = k1e''10, g = —kie" " 10 or p; = k1e*10, g = kie "0,

Let us now concentrate on the two-peak soliton solution in equation (f.7).

Lemma 5. Let x > 1, constant a > 0 and function
1+ 2

P (4.12)

y=y(r) =
then
1 ifa>1/2, % <0;
2. ifa=1/2, then %¥|,_; = 0;

3. if% > a > 0, then there exists one point x1 > 1 such that %

=0, x1 is one
r=x1

extreme mazimum point of y, and F2 - > 0.

Proof: We have
_ oy _a(G—20-1)
0T (a4 1Y

a

(4.13)

Firstly, y, < 0if a > 1/2. Secondly, if a = 1/2, y, = 0 when = = 1. At last, if 1/2 > a > 0,
there exist 1 > 1 such that y, = 0. Note that y, > 0if z € (1,21), y, < 0 if x > x1. So
1 is one extreme maximum point of y. |

Proposition 9. Let a,b, k be positive constants, £ = kx + ct,c € R, for following kind of

solution
b(1 + cosh 25)

y=-——"7>3"- (4.14)
( cosh 2€ + %)2
1. ifa > 1/2, u has one peak in its profile defined by & = 0;
2.if0<a< %, then there exist two peaks in profile;

3. There exist no more than two peaks in a soliton give by equation ([.14).

Proof: By calculation, we have

_ 2kbsinh 28 (% — 2a — cosh 25)
a (cosh 2¢ + %)3

T

. (4.15)

According to the Lemma [, we have

,15,



1. a > 1/2, there exist £ = 0 such that u, = 0 because sinh2£|§:0 = 0. Note
(% — 2a — cosh 25) < 0.

2. a = 1/2, there exist £ = 0 such that u, = 0 because sinh2|c—g = 0 and
(% — 2a — cosh 25) ‘520 = 0. However, let [£| be sufficiently small, we have u, < 0 if
E>0and u, > 0if £ < 0. So & = kx + ¢t = 0 defines one extreme maximum line of
u(z,t) on (x,t) plane.

3. 1/2 > a > 0, there exist £ = 0 and §& > 0 and & = —&; < 0 such that u, = 0. But
Uy > 01f &€ < =&15 up < 0if € € (=£1,0); up > 01if € € (0,&1); up < 0if € > & So
¢ = kx + ¢t = 0 defines one extreme minimal line on (x,t) plane; 0 < & = kx + ¢t
and 0 > —&; = —(kx + ct) define two extreme maximum lines on the (x,t) plane.

Using u — 0 if || — oo, conclusions are proven. [
Comparing equation ([.14) with equation ({.7) we get a = sine;, and then can understand
why sineq e, —r/10 Will lead to two peaks in one soliton of bKK but sineq|e, —3,/19 will lead
only to one peak in one soliton of bKK. On the other hand, one soliton solution of u in
equation ([.7) have one peak or two peaks(maximum case) in its profile. According to
analysis above, we can claim from the point of view of reduction in KP hierarchy that the
existence of two peaks in the soliton is traced to three facts:

1. The Grammian 7 function in Proposition [§ which determines the form of soliton in

equation (f.7);

2. The order of n-reduction, i.e. n > 5 can produce two peaks soliton in KP hierarchy;

3. The phase 1 of n-th root(n > 5) of €, such that 0 < a = sing; < 1/2.

Now we turn to the more complicated Téf;;?) from Proposition [f, which generates the

two soliton and periodic solution with two spectral parameters of bKK equation. The first
case is the two soliton solution.

Lemma 6. Let gbgo) = o(\i;x,t), i = 1,2, defined by eq. [-4), & = wk; cos e; + tk cos 3¢,

n; = xk;sing; + tkf’ sin3eg;, i = 1,2, then Té?&_(n)’nzg gives out

242 1
(35D _ g2 gz

zre2(6i+62) N 2o~ 2(6+62) (&)2 (&)2
4(K2 + k2 + 2k ky cos(er —€2))” 4(k2 + k3 + 2k1ka cos(er —e2))° \ A1/ \ Az

z 62(51 5 ) 32 2 _236_(251_52) Bl 2
+ 2 — ) + —
4ik1ko (k/’% + k/’g — 2k1ko COS(El + 52))2 Az 4ik1 ko (k/’% + k% — 2k1ko COS(El + 82))2 Aq

226 B
+ 2 =2
2iky ko sines (k? + k3 + 2k1ks cos(e1 — €2)) (k2 + k3 — 2k1 ks cos(e1 + €2)) <A2>

+ )
2ik1ko sin ey (k% + k?% + 2k1 ko COS(El — 52)) (k/’% + k?% — 2k1ko COS(El + 52)) Aq As
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* 289
zje

By

+
2ik1ko siney (k% + k2 + 2k1 ko cos(eq — 52)) (sz + k2 — 2k ko cos(e1 + 52))

7246*262

A
By

()

Jr
2ik1kosine; (k% + k3 + 2k1ko cos(e1 — 52)) (k% + k3 — 2k ks cos(e1 + 52))

—((k? + Kk3)? — 4k?k3(cos® &1 cos? €3 + sin” e1 sin” )

Il

Ay

+
2k1ks sineq sin eg (sz + k2 + 2k1 ko cos(e1 — 52)) (k% + k2 — 2k1ko cos(eq + 52))

Here z,i =1,2,3,4, are given in [B. 2! means the complex conjugation of z;.

In order to extract physical 7 function ﬂg?}f),
Bi ,_
A_i’ 1= 1, 2.

we need following two Lemmas for suitable

Lemma 7. For z;,i =1,2,3,4, as given in[B, the following identities

22 =223, 23 =22} (4.17)
hold.
Lemma 8. Let % = i%, % = iz—l, and g5 = @, g6 = gs = }le, go = Iiji, then
L 2 E
2 « 2
L SO

hold.

Taking %,i = 1,2, and relations in Lemma f back into Lemma [, the physical 7 function

L (242)

TogK 18 obtained.

Proposition 10.

99672(514’52)

2
bKK {4k1k2(

o2(61—E2)

k2 + k2 + 2k kg cos(e) — £2))°

+
Ak ka (K2 + k2 + 2k kg cos(eg — e2))°

o—(261-62)

+
4k1 ko (/{?% + /{?% — 2k1ko COS(€1

2
+ 82))
e21

+
Akey kg (K24 k3 — 2k ks cos(e) + £2))°

_l’_

gge >4

2k1 ko sin g9 (kﬁ% + k‘% + 2k1 ko COS(€1 — 62)) (kﬁ% + k‘% — 2k1ko COS(€1 + 62))

* 2k1ko sineq (k:% + k3 + 2k ko cos(e1 — 82)) (k:% + k3 — 2k ko cos(e1 + 82))

e262

_l’_

,17,
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—2&2
g6€
_l’_
2k ko sin ey (k:% + k2 + 2k ko cos(eq — 82)) (k:% + k2 — 2k ko cos(e1 + 82))
95 ((k3 + k3)? — 4k%k3 (cos? £1 cos? £5 + sin? g1 sin’ )
k1ko sineq sin ey (kj%—{— ki%—{— 2k1 ko COS(€1—€2)) (k?%—F k‘%— 2k1 ko COS(€1—|—€2))
(4.21)

The two solitons solution is u = (02 log %éf;;f)) In particular, €1 = €2 = {5 resulls in two

overtaking soltions moving in negative direction; € = €9 = ?1’—’6 results in two overtaking

soltions moving in positive direction; €1 = {5,62 = ?1’—’6 results in head-on colliding two

soltions.

The second case is a periodic solution with two spectral parameters of bKK equation from
Proposition f.

Lemma 9. Let (bz(o) = ¢(\i;x,t), i = 1,2, defined by eq. ({.3), & = xk; cos g; +tk3 cos 3¢,

n; = xk;sine; + tkf’ sin3e;(i = 1,2), then Té?&'(n)‘ ) gives
n—=

D) 42 o

ZFe2i(m+n2) 21 e~ 2i(m+nz) B\’ /By\?

{4(1@% + k3 + 2k1ko cos(e1 — 52))2 " 4(1@% + k3 + 2k ks cos(eq — 62))2 (A_l) (A_2)
23 e2i(m—nz2) B\ ? 236~ i(2m—12) B\’

" ks (R 4 12 1 Zkaks cos(er 1 2)) (A_z) " Lheka (K2 1 2 1 Zkakg cos(e + 2))° (A_l)

2¥e?im Bs
+ 2 2 — 2 2 A,
2k1ko cos e (k1 + k3 + 2k1 kg cos(eq 52)) (k1 + k3 + 2k1k2 cos(er + 62)) 2
zoe %M B4
+ 2 2 — 2 2
2k1 ks cosea (k:1 + k% + 2k1 ko cos(eq 52)) (k:1 + k3 + 2k1 ko cos(e1 + 52))

z4e 202 B
+ 2, 1.2 _ 2, 1.2
2k1kg coseq (k2 + k3 + 2kyk cos(e1 — £2)) (k? + k3 + 2k1 ko cos(e1 + €2))
((k? + k2)? — 4k3k3(cos® £1 cos® £5 + sin® g1 sin® €3))

k1ko cOSE] COSEY (k% + k3 + 2k ko cos(e1 — 52)) (k:% + k3 + 2k ko cos(e1 + 52))

N 2*621'772 <&>
2ki1ky coseq (k:% + k3 + 2k ko cos(e1 — 52)) (k:% + k2 + 2k ko cos(e1 + 52)) Ay

Here z;, i =1,2,3,4, are given in[{. zf indicates the complex conjugation of z;.

Similar to the two solitons solution of bKK equation, we need following two Lemmas to find
suitable %, 1 = 1,2, to extract physical ﬂg&? from equation ([.29) for periodic solution.

Lemma 10. For z;, i = 1,2,3,4, as given in [(, the following identities
22 =223, 23 =122} (4.23)

hold.
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Lemma 11. Let 2, = |2z|e% k = 1,2,3,4, be as given in[(, and % =2 B2 _ o—ifs

) Ay
_ || — |zl — |zl _ 1
and gy = ) 93 = ) 94 = Tz 95 = Ty then

2 2

z (Ba\" _z (Bi)" _

21 <A2> A <A1> — (4.24)
2 2

z1 ( B1 By . 1 By By _

Z <A_1> (A_2> - 2 <A1> <A2> — 429)

2 2
2By 2 (BN (B _ ;B _ oz (B (B2 _
Zi( A2 - ZI <A1> <A2> — 92 Zi( A1 - ZI A1 A2 — 9 (426)

hold.

We can get the physical 7 function %éf;;f) by taking %,z’ = 1,2 and relations in Lemma [L]]
back into Lemma .

Proposition 11.

A(242) _ 2cos2(n1 + n2) 2g3 cos2(n1 — 12)
bKK 4(](5% + k‘% + 2k1ko COS(€1 — 62))2 4k1ko (kﬁ% + k‘% + 2k1ko COS(€1 + 62))2
2g9 cos 2m;
+ 2 2 _ 2 2
2k1 ko cos €9 (kl + kﬁz + 2k1ko COS(€1 82)) (kl + kﬁz + 2k1ko COS(€1 + 82))
2g4 cos 2mo
+ 2 2 2 2
2k1ky cos e (k1 + k5 + 2k kg cos(e; — 52)) (kl + k3 + 2k k2 cos(e1 + 52))
95 ((k3 + k3)? — 4k?k3 (cos? e1 cos® e5 + sin® g1 sin® )
k1ko coseq coseg (kﬁ%—F k‘%—F 2k1 ko COS(€1—€2)) (k‘%—F k‘%—{— 2k1 ko COS(€1+€2))
(4.27)
The periodic solution with two parameters k1 and ko is u = ((9% log ﬂg&?). Furthermore,
€1 = €2 = %r results in two overtaking waves moving in negative direction ; €1 = €9 = Ai—g
results in two overtaking waves moving in positive direction; €1 = %,52 = Ai—g results in

two head-on colliding waves.

We have plotted soliton solutions of bKK in figure [, and there periodic solutions with two
spectral parameters in figure [i.

5. Periodic and soliton solutions of bSH equation

The 7 function of the bSH equation is still in the form of a Grammian although the bSH
equation does not belong to the CKP hierarchy, which is obtained in [B§] through the
Backlund transformation. Similar to the bKK equation, its 7 function is in the form of

Grammian, we can find 7 function Tééﬁl) and TééEQ)Of bSH from Grammian 7 function. Let

the initial value be v = 0 in equations ([.g) and ([[.7), then gbgo) = ¢(\;; z,t) are solutions of

8¢(AZ7 x, t)

Db Nz, t) = Nd(Niy 2, 1), 5 = (03p(N\is 1)) . (5.1)
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‘\""-..s"
w -1

Figure 3: Soliton solutions of the bKK equation ([[.15). Top left: one left-going (two-peak) soliton

when ¢; = % and k; = 1.2. Top right: two left-going soliton when k1 = 2, ky = 1.3,61 = &5 =

Bottom: Head-on collision of left- and right-going solitons when k1 = 1.8, ko = 1.3,¢e1 = 31’—’6, £9 =

SRis

Proposition 12 (see ref. ) The T function of bSH equation generated by Backlund
transformation from initial value u = 0 is

T]STSLI—EI_n)zIWnyn( ¢n 1o gO)’ (0),¢( )7"', ’SLO))

f¢£zo)1' 10)f 510)1' 2 f¢ ¢:(a0)"' f (0) 0) f¢ ¢$l)

0 0 0 0 0 0 0 0
[ g g
Jorm-o17 [ -dy [or by - o dnly [ 1 ém
and the solution u of bSH from initial value zero is
u= <8§ log Tég;in)) (5.3)

Here qbl(-o) = ¢(Ai;z,t) are solutions of equation .
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Figure 4: Periodic solutions with two spectral parameters of bKK equation ([l.15). Top left:
left-going periodic solution with k1 = 0.2,ky = 0.3,61 = €2 = 21—’6. Top right: right-going periodic
solution when k1 = 0.4,ky = 0.5,61 = €9 = %. Bottom: Collision of left- and right-going periodic

solution when k1 = 1,ky = 1.5, = %,82 = %.

In fact, Tt()TSL;I_n) can be generated by gauge transformation 75,4, _,. The Lax pair of bSH

1S
3
Lysg = 8;1 + 4u8§ + 4, Op + 2ugy + 4u? + v, Mgy = 82 + 3ud, + §ux,

and satisfy Ljqy = Lpsa, Myqy = —Mpsu. Similar to the CKP hierarchy, let T' =Ty, =
T]('l,bg_l))TD( go)), and do gauge transformation L](fS)H = TLysuT™ ! So (L‘E>2S)H)* = L](fS)H
requires Tp( gl))TI( go)) = T1(¢§1))TD( 50)) as we have seen in CKP hierarchy. The re-
maining procedure is the same as the gauge transformation of the CKP hierarchy as well as
the bKK equation. Of course, the generating functions (gbl(o) , %(O)) = (p(N\i;z, t), (N 2, 1))
satisfy equation ([.f]) and equation ([.7) if the initial values are u # 0,v # 0, or equa-
tion (p.1)) if the initial values are u = 0,v = 0.

Remark 1. We should note that Lysn|,_g = 02 +4u0% +4u,0p 4 2uyy +4u® = (02+2u)? =
L%(dv. The Lax pair of the KdV equation is

3
LKdV = 82 + 2U, MKdV = 8;;’ + 3U8z + §’U/x

— 21 —



TD(gbgO)) generates a single soliton solution of the KdV from zero initial value. Here

= o(\isa,t) satisfy Lxavé(hia.t) = Moo, t) and 225520 = Micqyg (M, 1)
simultaneously. The left-going multi-soliton can be produced by using repeated iteration
Of TD .

In order to get real and smooth solutions, such as soliton and periodic solution, we
should construct physical T function Tpgy from TéSJrn) which is complex and related to 4-th
roots of €. The case of n = 1 and n = 2 will be discussed in detail. Let us start to discuss
the single soliton with two directional propagation. To do this, similar to the above two
sections, we should assume the solution of equation (f.I]) as

QS()\l,,I,t) = Aleplerp?t + Bleqlirq?t’ b1 = kleia’(h = _kleiia’kjél1 = |>‘1|? kl € Ra
(5.4)

or
G\ 3, 1) = AP TP L Bttt it )~ keit g = ke kL = M|k € R (5.5)

For ¢(\i;x,t),i = 1,2, the difference between here and above two sections is the ki =

|\i],i = 1,2, instead of k? = |\;|,i = 1,2. From Proposition [[J we can extract physical T

function TI%H ) from T(g;_;n)

n:l.

Proposition 13. Let &, = xky cosey + tk3 cos 3e1, 7 Bl = je !, and ¢(0) = (]5()\1;36 t) a
defined by equation (p.4), then the physical T function of bSH eztracted from TbSH |n 118

AU — 26 4 o2

(5.6)

sineq

and the corresponding single soliton u = <8§ log ﬂ%ﬁl)) 18

4k2(coser)? <1 + COShzgl)

sineg

o <cosh 26+ Smel)Q . o0

Here e1 = Z. The velocity of the soliton is v = —k3 ijsgfll ley=2 > 0.
Proof:
2 ,2i(zky sineq +tk3 sin 3e1)
) _ [ g0y2 _ Ale ! 2 | 2%, 2 5.8
Tost /(qbl ) 2p1 <e O e (58)

As we discussed in Remark [l, the left-going soliton can also be generated by Tp.

Proposition 14. Let & = (zkjcosey + th cos 3e1)|e,—0, and (ﬁgo) = ¢(M\1;2,t)|ey=0 as
defined by equation ([5.4), then the physcial T function of bSH generated by TD(qﬁgO)) 18

A1 o,

fisn =1+ 5 (5.9)

1

- 22 —



and the corresponding single soliton u = <82 log Tél) > 18

2A1
w= i v (5.10)
(e_fl + B_iefl)

Here B—l > 0. The velocity of the soliton is v = —k? < 0.

Proof:
A
Tlf()é)H — gO) — B1 <e_§1 + _1€§1> (511)
By
. Tp (¢1”) 1 1
It can be clarified by (u = 0,v = 0) ——= (u(!) # 0,v() = 0), and then TbSH = gbl .

On the other hand, if (bgo) = ¢(A1;z,t) as defined by equation (f.§), then we can get
periodic solution from Proposition [[2.

Proposition 15. Let ny = xkysine; + tk‘;’ sin3e1, A1 = B1 =1 in ¢%O then the physical

T function of bSH equation for periodic solution extracted from Tén—i—n ln=1 is
o L en — e (5.12)
TbSH COS €1

and the corresponding peroidic solution u = (55 log Atgé—lgl)) is

coseq

—4k? sin? &, <7COS(277172€1) + 1)

w= . (5.13)
(smer T c0s(2m —€1))?
Here 1 = Z. The velocity of the solution is v = —k} SSIEI?’;II |€1:% < 0.
Proof:
2(xk1 cos e1+tk3 cos 3e1)
Sy [ o)y € ! 1
A5 = ) " (s tosem-en). a9
|

There are some relationship between the distributions of 4-th roots of €** and moving
direction of solutions.

1. (e, —e *1)|.,—o the first distribution of 4-th roots of e — (p; = ki€, q; =
—kie~*1)|.,—o in equation (5.4) — left-going soliton in equation (f.10);

2. (effr, —eie) o=

| z the second distribution of 4-th roots of € — (p; = k1e®!,q; =
—kle_i61)|51:§ in equation (f.4) — right-going soliton in equation (5.7);

3. (eial,e_i51)|51:% the third distribution of 4-th roots of e — (p; = k1!, q =
k1 e_i51)|€1:§ in equation (p.§) — left-going periodic wave in equation (p.13).
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In the above discussion, we know the right-going soliton and left-going periodic wave
of of bSH have the completely same form with the bKK equation, except 1 = 7/4 instead
of e = m/10 and ¢; = 37w/10. The reason is that the 7 function of two equations is in
the same Grammian of generating functions ¢§0)7 and generating functions ¢§0) for two
equations satisfy analogous linear partial differential equations with constant coefficients,
i.e. equation (f.T]) for bKK equation, equation (p.1]) for bSH equation. These relations
between bKK and bSH are still true for their two soliton and two parameters periodic
solutions.

Proposition 16. The two right-going solitons are given

u= (33% log ﬂ%ﬁ» (5.15)
in which %éé-lff) i

Aot = it o1 menmn/a (5.16)
and %éf;;f) is given by Proposition [14.

Proposition 17. The right-going periodic wave with two spectral parameters ki and ko is

given by

u= (2108 73" (5.17)
. L (242) .
in which Tygy s

~ (242 ~ (242

TISSH )= TéKK)‘€1:€2:7T/4 (518)

and %éf;;f) s given by Proposition @

According to the analysis in Remark [I], two left-going solitons of bSH equation can be
generated by a chain of gauge transformations

(0) (1)
(u=0,v=0) L%O)» <u(1) = 0,0 = 0) M} <u(2) # 0,02 = 0)

(using the notation of [27]), (bz(o) = ¢(\i;2,t)|sy—0, @ = 1,2, are defined by equation (f.4).
Their 7 function of bSH generated by To = T ( gl))TD(qbgO)) is

gbg(]) ngo)
b 0%

()

TbsH = (5.19)

(2) (2)

From 7,y we can obtain the physical 7 function %béH and two soliton solution.
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Proposition 18. Let gbgo) = ¢(\i;1,t)|ey=0 are defined by equation (B.4), & = kix +
kg’t,i =1,2. If % > 0, B—i < 0,ky > ki, then the physical T function ﬂ%)H s given by

~(2) e+¢, _ D1 B2 —(é1+&2)
T = (ko — ky)e — ki1 +k
bSH ( 2 1) Al A ( 1 2)
B
—(ky — ky) 2268182 4 —(k:1 + ky)e~(E1782), (5.20)
A2 A1

The two soliton solution is u = <6§ log %éé%{), which s left-going.

The collision of two soliton is generated by gauge transformation chain

(0) (2) (1)
(u=0,v=0) Tp(py ) (u(l) " 07?}(1) O) Tr(vy )T (py ") (u(z) ” 07?}(2) ” O) ’
(0) = ¢(A1;2,t)|e, =0 is defined by equation (p.4), ng , = ¢(Ao; x,t) is defined
by equation (5.4). The Correspondlng 7 function of bSH is
e | [ v ol v =05" | [ b oK % 5 91
TbSH (0) (0) = (0) (o) (5.21)
o) ¢ o)

Taking gbgo),z’ = 1,2, back into equation (p.21)), we have its explicit expression as following

Lemma.
Lemma 12. Let & = xki + tk‘;’, & = xkycoseg + tk;’ cos 3e3, Mo = xko siney + tk;’ sin 3eo,
zi=c¢+d;, i =1,3,5, as given in[[.

2+1 ;
és-i- ) _ ZZnQA%Alx

2} ebi T2tz z1e 8172 (Bg) <B1>
2ko (k‘% + kﬁ% + 2k1 kg cos 82) 2ko (kﬁ% + k‘% + 2k1 ks cos 62) Ag Ay

n Zhe St <B1 ) z3ef1 262 (Bg ) 2
2ko (k% + /{?% — 2k1 ko cos 52) Aq 2ko (k% + k% — 2k1ksy cos 82) Ay

25651 By
o 2 2 . 2 2 - . (5.22)
iko sin e (k‘l + k5 + 2k1 kg cos 82) (k:l + k5 — 2k1 ks cos 52) Ay

n Zre 8 By By
1k9 sin g9 (k% + k% + 2k1 ko cos 52) (/{?% + k% — 2k1k9 cos 52) Ay A '
Lemma 13. For z; = |z|e’ (i = 1,3,5), the following identities
2125 = 2378, €030 — (205 (5.23)

are true.

Lemma 14. Let z,i = 1,3,5, be as given by [0, if % = i, % = i%, 92 =94 =

23

ge = 1, then

2 2
__a (B (B __# (B _ % (B2 (B
2= <A2> <A1>’ =T <A2> BT <A2> <A1>’ (5:24)

hold.
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With the help of Lemmata [ and [[4, we deduce the physical T function of colliding two
soliton of bSH equation from Lemma [L3.

Proposition 19. Let g2, g4 be given as in Lemma , then
bSH 2ko (K} 4 k3 + 2kikacosea) 2k (k% + k3 + 2k1ks cose)
e—811282 N 94651 —2&2
2ko (k‘% + k‘% — 2k1ks cos 62) 2ko (k‘% + k% — 2k1 ks cos 62)
egl
+
kosines (k? + k3 + 2k1ko cosea) (kf + k3 — 2kika cosez)

6_51
+ - 5 5 5 5 (5.25)
ko sineg (kl + k5 + 2k ks cos 52) (kl + k5 — 2k ko cos 52)

+

We have plotted the two soliton solutions of bSH equation in figure ], and periodic solutions
with one spectral parameter and with two spectral parameters of the same equation in

figure fi.

10—

Figure 5: Two left- and right-going as well as head-on colliding solitons for the bSH equation )
Parameters are chosen as: Ay = By, Ay = 2,By = —1,k; = 1.5,k = 2 (left); ky = 1.5,ky =

1.3,e1 = go = 7 (right); k1 = 0.8,k = 0.9,e2 = 7 (collision).
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Figure 6: Left-going periodic solutions with one (left) and two (right) spectral parameters for
the bSH equation ([.9). Parameters: ki = 1,e1 = Z(left); k1 = 0.2, ko = 0.3,e1 = 2 = Z(right).

6. Lower and Higher order reductions

In this section, we want to discuss the general character of soliton equation from lower order
to higher order in one same sub-hierarchy. The purpose is to show the relation between
propagation of soliton on (x,t) plane and the order of Lax pair, and show the difference
between the lower reduction and higher reduction. Let Lax pair of soliton equation is
(L, M), which defines ¢(\; x,t) by

9p(\; , t)
ot
There are some examples of n-reduction of the KP hierarchy. For the BKP hierarchy,

Loz, 1) = Ap(\; 2, 1), = Mo(\z,t). (6.1)

Lax pair  3-reduction  5-reduction  7-reduction 9-reduction

L B B B B
b3 5 7 9 (6.2)
M Bs Bs Bs Bs
Equation SK bSK higher order higher order
Here
> 5 3 2 2, 10
Bs = 0 + 5ud® + 5uu 02 + (5u + gum)ax, (6.3)
SK B, [l :  9us + 450 us + Usprrws + 15Ulzpe + 15Utz = 0. (6.4)
Bs and Bs are given by equations ([.L10) and ([L.11)). For the CKP hierarchy,
Lax pair  3-reduction  5-reduction  7-reduction 9-reduction
L B B B B
b3 5 7 9 (6.5)
M Bs Bs Bs Bs
Equation KK bKK higher order higher order
Here
~ 15 35 5
Bs = 82 + 5u8§' + 7%63 + <5u2 + Eum) Oy + buuy + gumx, (6.6)
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. 75
KBB: 9u+ 45U Uy + Upppme + 15Uy + < Uallas = 0, (6.7)

Bs and Bj are given in equations ([l.13) and (|L..14). There are several even-reductions of

the KP hierarchy as following,

Lax pair  2-reduction  4-reduction 6-reduction  8-reduction

L B B B B
2 4 6 8 (68)
M By Bs By Bs
Equation KdV bSH higher order higher order
Now we start to discuss the BKP hierarchy.
Lemma 15. Let £~1 = xky cosey + tk} cos bey, then %S(&(H) s expressed by
A(L4D) _ o (141)
TSK Tosk e, —>& (6.9)

and the corresponding single soliton is u = <82 log TSH)). The wvelocity of soliton v. =

—k‘f% =k} > 0. Here T(S;L( ) s given by Proposition [f.
51: 6

Proof: Because the SK equation and bSK equation belong to the same sub-hierarchy
BKP, so the results of bSK are also hold by SK equation only if we replace &; in bSK by
51 = zky coseq + th] cos 5e1. For SK equation, the generating functions QS( 0) — = ¢(Ni;,t)
of gauge transformation satisfy

o(A;z,1)

ot
which are different with equation (B.I]) for bSK equation. So k$ = |A\;|. This difference
determines replacement in equation (.9). Of course, similar to the bSK, we also should
assume the solutions of equation ([.1() be the form of

Ro(\iz,t) = Ap(\ 2, t), = 00p(\; @, 1), (6.10)

¢(A17 .%',t) = Alep1$+p‘:jt + Bleq1$+q?t7p1 = klei617q1 = _kle_itglaki3 = ’)‘1‘7 kl € Ra (611)
or
(A2, t) = A el TP L BTt ) ket g = ke k3 = |\i|,k € R, (6.12)

Taking the generating functions qS(-(O)) in eq. (f-I1]) back into the Proposition [[, then we

can extract Ts(;rl) from Ts(;rl) The relation TéHl) = b;zl

In particular, there are two distributions of roots of third-order of e on circle, which is

|£1 >& is given by comparison.

symmetric with respect to y-axes. However, they are corresponding to same single soliton
solution.
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-11m - —117 . . . ; . .
2. <€ZT,—€Z 6 > one distribution of 3-order root of € on unit circle — (p1 =

117 S117

kie"s , q1 = —kie”""s ) in equation (B.1]) — one soliton as 1.

Lemma 16. The higher order equations of the BKP hierarchy are defined by equation
(6-2). For the n-reduction equation of the BKP hierarchy (nBKP), n = 2j + 1, j =

3,4,5,..., and let &y = Tk, cos gy + th, cos ey, kI = k2T = |Am|, then the physical T
function of the nBKP generated by T4 is

L(1+1) _ A(141)

ThBKP — ThSK ‘51—>£~1p’ (6.13)
and the corresponding single soliton of the nBKP is u = (92 log %1(1]13;13). Here e, = 21;;171 =
%W,p =1,2,3,...,7, %éé;gl) is given by Proposition [J. So the single soliton can move

along j directions in (x,t) plane, which are given by glp = 0 associated with j-value of g,
given before.

Proof: Comparing the nBKP with the bSK equation, the main change here is the Lax
pair (L,M). The Lax pair of the nBKP defines the generating functions gbg(o)) = ¢(Ni;,t)
are slight different as

0z d(A;w,t) = Ap(A; , 1), 5

= D3p(\;2,t) (6.14)
and then we assume

dA1;2,t) = AP TP 4 Bttt b — ket g = —kje T B} = |\, ks € R, (6.15)
or

QS()\l; x, t) = Alep1m+p‘;’t + B1€q1x+q§t,p1 = k‘leiap, q1 = k‘le_iap, kY = |)\1|, k1 € R. (616)

In order to avoid the divergence of u, we only take 0 < ¢, < 7, and then g, = 22;177 =
%W,p = 1,2,3,...,j. This change results to the emergence of &, = wk,, cose, +

th3, cos 3ep, k7 = k2T = |\,|. The %1(1]131;13, and single soliton solution u = (92 log %IEIBJ;F),)

)
tion (f.17) associated with A\; for the gauge transformation. Further, for a given p, &1, =0

can be derived directly from the Proposition [| and the generating functions ¢§(0) in equa-
determines one moving direction of the single soltion on (x,t) plane, then the single soliton
solution have j directions for propagation because p =1,2,...,]. |
From Lemmata [, [[§ and the results of the bSK equation, we have

Proposition 20. 1. The single soliton u = <6§ log %é};{gg) of the nBKP equation, n =
2+ 1,5 =2,3,4,..., can move along a direction defined by Elp =0 on (z,t) plane

for a given p.
2. (eial’, —e_iap) one distribution of n-th order roots of €' on circle — (p1 = kiefr,q =

—k:le_i‘fp) in equation (.13) — The single soliton moves along a line &, = 0 on

™ 3 5 (2j—1)m
(z, t) plane. Here g, € {4].+2, pya ty e, SRR vl B
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3. For a given n = 25+ 1, the single soliton of the nBKP have j directions to propagate
on (z,t) plane, which are defined {1, =0,p =1,2,3,... 7.

Note that the result of j =1 in above Proposition is given by Lemma [[j.

Now we turn to the lower and higher reductions of the CKP hierarchy. Similar to the
discussion of the BKP hierarchy in this section, we can obtain parallel results in the CKP
hierarchy, so we write out the results without proof in the following to save space.

Lemma 17. Let £~1 = xky cosey + tkj cos bey, then TI(;; ) can be expressed by

~(1+1 N 1+1
) =2 e sz (6.17)

and the corresponding single soliton is u = (621 og T A(Hl)). The wvelocity of soliton is

~ _1.4cosbeq 14 ~(141) . . L
U= —kj coser | g = ki > 0. Here 7,1’ is given by Proposition i
6

Lemma 18. The higher order equation of CKP defined by equation (6.4). For n-reduction
of CKP hierarchy (mCKP), n =2j+ 1, j = 3,4,5,.... Let &mp = Thy, cos e, + thd, cos 3ep,
ke = 2l |Am|, then the T function of the nCKP generated by Ty41 is

2041 L(141)

ThOKP = ThKK ’61—>§1p’ (6.18)

and the corresponding single soliton of the nCKP equation is u = (32 log A(a—q),). Here

Ep = oo = mﬂ', p=1,23,...,5, and féKJ;) is given by Proposition [}. So the single

soliton can move along j directions on (z, t) plane, which are given by glp = 0 associated
with j-value of €, given before.

Using the Lemmata [[7, [[§ and results for the bKK equation, we get

Proposition 21. 1. The single soliton u = ((9% log %(g&,) of the nCKP, n =2j+1,j =
2,3,4,..., can move along a direction defined by §1p =0 on (z, t) plane for a given

p.
2. (e¥r,—e~r) one distribution of n-th order roots of €' on circle — (py = k17, q =
—k1e7*?) in equation (.183) — the single soliton moves along a line &1, = 0 on (z,

3r 5w 2j-Dm
t) plane. Here ¢, € {4J+2, pyan Tl v DR vl

3. For a given n = 2j + 1, the single soliton of the nCKP can move along j directions
on (z,t) plane, which are defined by &1, =0,p=1,2,3,...,]

4. In particular, if 0 < e, < 7/6, u = <62 log T(CKF),> s a two-peak soliton.

In above Proposition, the case of j = 1 is given by Lemma [[7. This Proposition shows
there exist several single two-peak solitons for nCKP if n > 11 .

Corollary 1. There are two single two-peak solitons for 11-reduction of CKP hierarchy,
i.e. 11CKP equation, ujickp = (8:3 logﬂg;{)), in which e = 7/22 and 1 = 37/22

respectively. Here ﬂg;(l) is given in equation (4.4)
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Figure 7: Left-going two-peak soliton with dashed line (e; = 7/22) is faster, left-going two-peak
soliton with full line (¢; = 37/22). The left is plotted when ¢t = 10, the right is plotted when

t=-10

We have plotted it out in figure [ with k; = 0.8.
We have known that a = 1/2 in Lemma [J and Proposition [J is one crucial point to

exist one-peak soliton or two-peak soliton. It is more interesting that a = 1/2 will lead to
“stationary” soliton of higher reductions of the BKP and the CKP hierarchy, which is not

moving on (x,t) plane. When &1|.,—r/s = (k17 coser + tk3 cos 3¢1])ey=n/6 = (k17 COS€1), &1
is independent with t. So u is independent with t by taking this &; into Proposition | and

Proposition [f.
Corollary 2.

1. There exists “stationary” single soliton for the 9-reduction of BKP hierarchy, which

1S U9BKP = (3% log %éé};l)> | c1=37/18" Here %ég(l) is given by Proposition [};

2. There exists “stationary” single soliton for the 9-reduction of CKP hierarchy, which

18 U9CKP = <8§ log %é;;)) ]61:%/18. Here %é%{}l) is given by Proposition [}.

We have plotted out “stationary” soliton for the 9-reduction of CKP in figure § when
ki =1.

Corollary 3. There is single two-peak soliton u = ((9% log ﬂ%};lv |51:7r/8 for 8-reduction of
the KP hierarchy; there is “stationary” single one-peak soliton u = <8§ log ﬂ%ﬂl)> |51:7r/6

for the 6-reduction of the KP hierarchy. Here ﬂ%ﬁl)) is given by Proposition [13.

The two-peak soliton for the 8-reduction of KP hierarchy is plotted in figure | when k; = 1.
For our best knowledge, this is first time to report the even-reduction of the KP hierarchy
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Figure 8: Left: “stationary” soliton for 9-reduction of CKP, Right: Single two-peak soliton for
8-reduction of KP.

also has two-peak soliton solution. The possession of two-peak soliton solution is not sole
property of CKP hierarchy.

7. Conclusions and discussions

We have presented a systematic way in which to obtain the solution of the n-reduction
(n =4,5) from the general 7 function of the KP hierarchy. Our approach is based on the
determinant representation of gauge transformations T}, [ and 7(**t%) [B§]. It may be

summarized as follows: )
(n+k) constraints of GFs and k=n__(n+k) (n+k) 5—reduction (n+k)
T ( ) ——————— Trq  lk=nl

Takp  (TCKP Eq = bSK, bKK)

assume the form of ¢;and find suitable%
T

efficient 7 function %éerk)\ k=n=1,2- We have applied this

approach to various equations. The one soliton, two soliton and periodic solution are
constructed for bSK, bKK and bSH. We show the corresponding relation between the
distribution of 5-th (or 4th) roots of € on the unit circle and several types of solutions
(left-going one soliton, right-going one soliton, left /right-going periodic solutions). We also
show the reason for the existence of the two-peak soliton. Furthermore, the lower reduction
and higher reduction of BKP, CKP, and the even-reductions are explored by this method.
Our results show that the soliton of the n-reduction (with n =25+ 1, j = 1,2,3,...) of
BKP and CKP can move alone j directions, which are defined by Elp = 0. Each direction
corresponds to one symmetry distribution of n-th roots of €* on the unit circle. This
supplies a very natural explanation why the 5-reduction BKP (or CKP) has bi-directional
solitons whereas the 3-reduction of BKP (or CKP) has only single-directional solitons. At
last, the two-peak soliton is not a monopolizing phenomena of only the CKP hierarchy.
Rather, we find that the higher-order even-reduction of KP also exhibits two-peak solitons
and we elucidate the criterion for its existence from the Grammian 7 function. At the same
time, we show there is not three and more peak soliton from Grammian 7 function. The
“stationary” soliton for higher order reduction of KP hierarchy is also obtained.
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We think that it is possible to construct an N-soliton solution of the bSK, bKK and
bSH equations by this approach. Namely, there exist suitable % (i =1,2,...,N) such
that we can find a physical T function 7(V+N )\Eq for these equations from a complex-
valued 7(N+N )\Eq, which is symmetric because we have assumed generating functions ¢;
in equation (B.§) and equation (B.§) with symmetric form. Here Eq = bSK, bKK, bSH.
Additionally, it is worthy to discuss the phase shift in the collision of one-peak soliton and
two-peak soliton. Furthermore, it is possible to construct solutions for bSK, bKK and bSH
from constant initial value u = constant # 0, which is parallel to present results.

Upon completion of this work, Prof. V. Sokolov kindly pointed out ref. [i(] where
equations ([.g), (6.4), (b.7) and their Lax operators as well as the Lax operator L =
0 + ud~'u for KAV equation have been obtained for the first time.
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A. bSK equation

Take z = ¢ +idi(k =1,3,5,7). Then

c1 = kikg cos(e1 + 2) [k:l cos2e1 + /<:2 cos 269 + 2k ko cos(e1 + €2 ]

+ky kg sin(eq + €2) [k‘l sin 2e1 + k:2 sin 2e9 + 2k ko sin(eg + 52)] (A1)
dy = —kiko cos(e1 + 2) [kl sin 2e1 + k2 sin 29 + 2k ko sin(e1 + 52)]

+ky kg sin(e1 + €2) [k‘l cos 2e1 + k2 cos 2e9 + 2k ko cos(e + 52)] (A.2)
c3 = kpkg cos(e; — e9) [k% cos 2e1 + k:g cos 2e9 — 2ki1ko cos(e1 — 52)]

+kikosin(eq — e2) [k% sin 2e1 — k:% sin 2e9 — 2k ko sin(e; — 82)] (A.3)
ds = —kiko cos(e1 — €2) [k‘% sin 2e1 — k% sin 2e9 — 2k ko sin(eg — 52)]

+kikosin(e1 + £2) [k% cos 21 + k% cos 269 — 2k1ka cos(e1 — 52)] (A.4)
c5 = 2k1kosiney [Cos €1 (k:% cos 21 — k:% — 2k1kg sin e sin 62)]

+2k1 ko sin eg [le cos ey siney (k1 sineq + ko sin 52)] (A.5)
ds = —2k1ko sin e [ril cos®eq (k1 sineq + ko sin 52)]

+2k1 ko sin eg [sin &1 (k% cos2e1 — k% — 2k1ko sin 1 sin 82)] (A.6)

c7 = 2k1kosineg [cos €9 (k:% — k% cos 2e9 + 2k1 kg sin g1 sin 52)]
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—2k1ko sineq [kag cos g9 sin ey (k1 siney + ko sin 62)]

d7 = 2k1kosineq [Qk:g cos? g5 (k:1 sineq + ko sin 82)]

+2k1 ko sin g1 [sin €9 (k‘% — k:% cos 2e9 + 2k1 ko sin g1 sin 52)]

B. bKK equation (two solitons)

Take 2z = ¢ +idi(k = 1,2,3,4). Then

Cc1 =

dy =

Cy =

Cq =

dy =

cos(e1 + €2) [k% + k3 + 2k ks cos(eg — 52)]2

— Ak ko [kl cos 2e1 + ko cos 2e9 + 2k ko cos(er + 52)]

sin(e; + €2) [k% + k3 + 2k k cos(eg — €2)] 2

—4k1 ko [k% sin 2e1 + k% sin 29 + 2k1 ko sin(e1 + 52)]

cos €y [k% + k:% + 2k1 kg cos(e — 62)] [k% + k% — 2ky ko cos(e1 + 52)]
—4kikosinegy (sz sin 2e1 + 2k1 ko sin g5 cos 61)

siney [k:% + k:% + 2k1 ko cos(e; — 52)] [k:% + k% — 2k ko cos(e1 + 82)]

+4k1 ko sin e (k:% cos 261 — k:g — 2k1kg sin e sin 62)

= cos(e] — &3) [k:% + k% — 2k ko cos(e1 + 82)]2

+4kq ko [k‘% cos 2e1 + k% cos 2e9 — 2k ks cos(e1 — 62)]

sin(e; — €2) [k% + k3 — 2Ky ko cos(e1 + €2)] 2

+4kq ko [k‘% sin 2e1 — k% sin 2e9 — 2k1 ko sin(eg — 62)]

COS €9 [k:% + k3 + 2k1ky cos(eg — £9)] [k:% + k3 — 2ky ky cos(e] + £)]
—4kikosineq (k:% sin 2e9 + 2k1 ko sin £1 cos 52)

sin e [k:% + k:% + 2k1 ko cos(e1 — 52)] [k:% + k% — 2k ko cos(e1 + 82)]

+4kq ko sin 51( — k% + k:g cos 269 — 2k1 ko sin g1 sin 52)

C. bKK equation (periodic solutions)

Take 2z = ¢ +idi(k =1,2,3,4). Then

Cc1 =

Cy =

dy =

C3 =

cos(e1 + €2) [k% + k3 + 2k ky cos(eg — 52)]2

— Ak ko [k% cos 261 + k3 cos 265 + 2k ko cos(e1 + 52)]

sin(e; + €2) [k% + k3 + 2k ky cos(eg — €2)] 2

—4k1 ko [k% sin 2e1 + k% sin 2e9 + 2k1 ko sin(e1 + 52)]

CoSs €1 [k% + k:% + 2k1 kg cos(e — 52)] [k% + k% + 2k1 ko cos(eg + 52)]
—4k1 ko coseg (k:% cos2e1 + k:g + 2k1 ko coseq cos 82)

sin ey [k% + k:% + 2k1 kg cos(e — 52)] [k% + k% + 2k1 ko cos(e1 + 52)]
—8k%k2 Cos €9 sin €1 (k‘l coseq + ko cos 52)

COS(€1 — 62) [k?% + k‘% + 2k1ko COS(€1 + 62)]2
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(A7)

(A.8)

(C.1)

(C.2)

(C.3)

(C.4)



—4k1 ko [k‘% cos2e1 + k‘% cos 2e9 + 2k1 ko COS(€1 — 62)] (C5)
ds = sin(e; — e3) [k:% + k% + 2k1 ko cos(e1 + 82)] 2

— Ak ko [k‘% sin 21 — k3 sin 269 + 2k ko sin(e; — 62)] (C.6)
C4 = COSE9 [k:% + k:% + 2k ko cos(e1 — 52)] [k:% + k% + 2k1 ko cos(e1 + 82)]

—4k1 ko cos eq [k:% + k2 cos 2e9 4 2k ko cos £1 cos 62] (C.7)
dy = siney [k:% + k:g + 2k1 ko cos(e1 — 52)] [k:% + k% + 2k1 ko cos(e1 + 82)]

—8k1 k2 cos e sin ey (k‘l cos e + ko cos 62) (C.8)

D. bSH equation

Take zp = ¢ +idk(k = 1,3,5). Then

c1 = 2ko(kycoseg + ki) — (k:% + k‘% + 2k1 ko cos e9) cos £9

d| = ng sineg — (k:% + k% + 2k1 ko cos e9) sin ey

c3 = 2ko(kycoseg — ki) — (k:% + k‘% — 2k1 kg cos eg) cos e9

ds = 2k3siney — (k3 + k3 — 2k1ky cos £3) sin &3

cs = 2k3(k3 + k) sin® ey — (k2 + k3 + 2k1ky cos e9) (k? + k3 — 2k1ky cos €9)
ds = k3 sines 2k (k] + k3) — 4k1 k3 cos® &3]

~ o~ o~ o~ o~
oo oo UU
S Ot s W N =
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